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Abstract. An important issue in the development of higher-order methods for incompressible
flow is how they perform when the flow is turbulent. A useful diagnostic of a method for turbulent
flow is the minimum resolution that is required to adequately resolve the turbulent energy cascade
at a given Reynolds number. In this paper, we present careful numerical experiments to assess
the utility of higher-order numerical methods based on this metric. We first introduce a numerical
method for the incompressible Navier-Stokes equations based on fourth-order discretizations in both
space and time. The method is based on an auxiliary variable formulation and combines fourth-
order finite volume differencing with a semi-implicit spectral deferred correction temporal integration
scheme. We also introduce, for comparison purposes, versions based on second-order spatial and/or
temporal discretizations. We demonstrate that for smooth problems, each of the methods exhibits the
expected order of convergence in time and space. We next examine the behavior of these schemes on
prototypical turbulent flows; in particular, we consider homogeneous isotropic turbulence in which
long wavelength forcing is used to maintain the overall level of turbulent intensity. We provide
comparisons of the fourth-order method with the comparable second-order method as well as with a
second-order semi-implicit projection method based on a shock-capturing discretization. The results
demonstrate that, for a given Reynolds number, the fourth-order scheme leads to dramatic reduction
in the required resolution relative to either of the second-order schemes. In addition, the resolution
requirements appear to be reasonably well predicted by scaling relationships based on dimensional
analysis, providing a characterization of resolution requirements as a function of Reynolds number.
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1. Introduction. A broad range of problems in fluid mechanics are character-
ized by dynamics with low Mach number. Because of the high computational cost of
resolving fast time scales in these problems, many numerical methods for low Mach
number flows are based on model equations derived from low Mach number asymp-
totics, which exploit the separation of scales between fluid motion and acoustic waves
to derive specialized systems for which the natural time scale of the system is based on
the fluid velocity rather than the speed of sound. Prototypical of this type of system
are the incompressible Navier-Stokes equations where passing to the zero Mach num-
ber limit of the compressible Navier-Stokes equations yields a divergence constraint
on the velocity. Low Mach asymptotic model equations for more complicated systems
have been developed for combustion (see, e.g., [28, 35, 32, 25, 36, 16]), atmospheric
flows (see, e.g., [34, 17, 13]) and astrophysics (see, e.g., [6, 33]). Within these more
general contexts, one can incorporate effects of compressibility such as those arising
from reactions and other thermal processes and effects arising from stratification of
the ambient background, while still formulating the problem in the context of a model
that does not include acoustic wave propagation.

Many low Mach number flows of interest are turbulent. The objective of this
paper is to explore the utility of higher-order discretization approaches for simula-
tion of turbulent low Mach number flows in the simplest possible setting, namely,
the incompressible Navier-Stokes equations. The convergence behavior of a higher-
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order algorithm for a simplified test problem is easily documented. As the resolution
increases for smooth problems, higher-order methods will eventually provide more ac-
curate solutions than lower-order methods. However, although we know that, asymp-
totically, a higher-order method has reduced error for smooth problems as resolution
increases, we cannot make quantitative predictions of the error for different methods
at a given resolution. This issue is particularly important in the context of turbulent
flows because we cannot a priori assume that the minimum resolution falls within
the asymptotic range of the methods. Thus, in order to quantify the potential com-
putational advantage of using a higher-order method for turbulent flows we would
like to determine the minimum resolution required to adequately resolve turbulent
flow at a given Reynolds number for discretizations with different formal order of
accuracy. To do so we will use numerical experiments, focusing on forced isotropic
homogeneous turbulence in which a long-wavelength forcing term is used to maintain
a desired turbulence intensity, and consider the resolution requirements needed to
adequately resolve both the inertial range and the dissipation range of the turbulent
energy spectrum.

One common approach for incompressible flow (and more general low Mach num-
ber flows) is the use of projection-type discretizations to enforce a divergence con-
straint on the computed velocity. Projection methods can be thought of as fractional
step schemes, wherein the equations are first evolved with a lagged approximation to
the constraint, and then a projection operator is applied to push the solution back
onto the divergence constraint. This type of simple fractional step scheme is inher-
ently limited to second-order accuracy in time. Many variations of projection methods
have appeared that use second-order spatial discretizations so that the overall method
is second-order accurate. See e.g. [24, 39, 5, 10], the review article [20] and Prohl
[37].

Here we compare the ability of projection methods with different orders of accu-
racy in space and/or time to resolve turbulent flow characteristics. The fourth-order
method used here is based on a variant of the auxiliary variable formulation of the
Navier-Stokes equations that represents an extension to viscous flows of the fourth-
order method introduced in [22]. The spatial discretization of the method is based on
a finite-volume formulation, which can easily be modified to have either second- or
fourth-order spatial accuracy. The temporal discretization is based on a semi-implicit
spectral deferred corrections (SISDC) algorithm, which can also be trivially modified
to produce either second- or fourth-order temporal accuracy. We note that there are
alternative higher-order semi-implicit temporal methods that can be considered for
the incompressible flow equations (e.g. [23, 7, 15, 19]). We consider here an SDC-type
approach because it provides a clear and simple way to compare second- and fourth-
order methods. Although we do not consider more general low Mach number flows
here, the combination of finite volume differencing and the SDC temporal integra-
tion provides a framework for temporal integration that can potentially be extended
to more general low Mach number flows involving additional physical processes (see,
e.g., [8]) and can be integrated with adaptive mesh refinement [2, 16, 33].

In the next section, we review the auxiliary form of the Navier-Stokes equations
and in Section 3 we present the details of the numerical methods used in this study. In
Section 4, we first present a numerical convergence study that shows that the different
SDC algorithms converge at the expected rates. We also illustrate the behavior of
mixed accuracy versions that are formally second-order in space but fourth-order in
time (and vice-versa). Then we consider the performance of the methods in forced
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homogeneous turbulence simulations. In order to show the utility of higher-order
accuracy in both space and time, we compare fully fourth-order and second-order
versions of the SDC algorithm and the second-order projection algorithm used in [2, 4].
We show that the fourth-order in space and time method leads to significant reduction
in the minimum resolution needed to resolve the flow at a given Reynolds number.
Furthermore, the resolution requirements appear to be reasonably well predicted by
scaling relationships based on dimensional analysis, providing a characterization of
resolution requirements as a function of Reynolds number.

2. Equations of Motion. In this paper, we consider flows with vanishing Mach
number and hence begin with the incompressible Navier-Stokes equations

vt = −∇ · (v ◦ v + Ip) + ν∇2v + H (2.1)
∇ · v = 0,

where v and p are the velocity and pressure, respectively; I is the identity tensor,
ν is the kinematic viscosity and H is an explicitly defined forcing term described in
Section 4. Alternative formulations of the Navier-Stokes equations can be derived by
introducing a variable u∗ that differs from the velocity by the gradient of a scalar
[38, 18, 10]. Following the terminology in [22], we introduce the auxiliary variable,
u∗, determined by the equation

u∗t = −∇ · (u ◦ u + Iq) + ν∇2u∗ + H (2.2)
u = P(u∗) , (2.3)

where q is an a priori prescribed approximation to the pressure. The operator P is
defined by P(u∗) = u∗ −∇φ where

∇2φ = ∇ · u∗ (2.4)

so that u = P(u∗) is divergence-free. The explicitly defined approximation to the
pressure, q, in Eq. (2.2) is equivalent to a choice of gauge in impulse methods [38].
Substituting u∗ = u +∇φ into Eq. (2.2), confirms u satisfies Eq. (2.1) with

p = q + φt − ν∇2φ. (2.5)

Since Eq. (2.5) implies p− q = φt− ν∇2φ, the closer q is to the exact pressure, p,
the closer the auxiliary variable, u∗, is to the exact velocity, u. Hence in our numer-
ical testing, q is reset to approximate the pressure, p, at the beginning of each time
step, and held fixed over the time step. Since in this study only periodic boundary
conditions are considered and an “exact” projection operator is being used (see Sec-
tion 3.2.2), the choice of q does not change the accuracy of the method. Additional
detail on how Eq. (2.5) is used to update the pressure in the numerical method is
included at the end of Section 3.4.

The advantage of the auxiliary variable approach is that u∗ is not subject to a
divergence constraint, hence a higher-order temporal discretization can be applied
directly to the evolution equation for u∗. In the following section, we present a
fourth-order discretization of the auxiliary variable equations using a conservative
finite-volume method in space and a deferred correction method in time.

We have omitted a discussion of boundary conditions for the equations of motion.
The focus of this paper is on evaluating the benefits of a higher-order discretization
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for bulk flow phenomena and hence the numerical tests are done in simplified periodic
geometries. The construction of higher-order temporal methods for PDEs with time-
dependent boundary conditions (even for simple equations) is not straight-forward,
and many papers devoted to avoiding a reduction of order at the boundary have
appeared [21, 12, 1, 3, 11]. The best treatment of boundary conditions for higher-
order, semi-implicit methods for divergence constrained flows is still an open research
problem.

3. Method. In [22], a fourth-order (in time and space) method for the constant
and variable density, inviscid, low Mach number asymptotic equations in two dimen-
sions is presented. The numerical method used in this study is an extension of the
method in [22] to viscous flows in three dimensions. The main modification to the
method in [22] is the use of a semi-implicit Spectral Deferred Corrections (SISDC)
method to treat the diffusive terms. Coupling of the SISDC method with an auxiliary
variable formulation has appeared in [29, 31]. In principle, other semi-implicit tem-
poral schemes could be used instead; however, there are two main motivations for the
use of the SDC method. The first is that the order of the method is easily determined
by specifying the number of deferred correction iterations. The second is that the
particular numerical implementation used for the numerical studies is designed for
use on problems with more complicated equations where multiple operator splitting
and multirate time integration is desirable (as in, e.g., [8, 26, 9]).

3.1. Finite Volume Formulation. To facilitate the explanation, several nota-
tional conventions are first introduced. We assume that the three-dimensional domain
is divided into a uniform array of cells of length, width and height h. Let the cell with
center at (xi, yj , zk) be denoted by Vi,j,k, and let the half-integer subscripts i + 1/2,
j+1/2, k+1/2 denote a shift by distance h/2 in the x-, y- and z-direction, respectively.
We also denote by Ei+1/2,j,k the face of Vi,j,k corresponding to xi+1/2,j,k = xi + h/2;
i.e., Ei+1/2,j,k = {xi+1/2} × [yj−1/2, yj+1/2] × [zk−1/2, zk+1/2]. The other faces are defined
analogously.

The finite-volume approach is based on an evolution equation for the cell average
of the auxiliary variable u∗ defined by

ū∗i,j,k(t) =
1
h3

∫
Vi,j,k

u∗(x, y, z, t) dx dy dz. (3.1)

The finite-volume discretization updates cell averages by the construction of fluxes
that are defined as averages over the faces of the cells. For example,

f̃(t)i+1/2j,k =
1
h2

∫
Ei+1/2,j,k

f(xi+1/2, y, z, t) dz dy (3.2)

with the analogous formulae for other faces.
As a further notational convenience, we also use a tilde without index shifting

when referring to the cell-edge averages of a vector quantity when the first compo-
nent of the vector is averaged over Ei+1/2,j,k, the second component is averaged over
Ei,j+1/2,k, and the third over Ei,j,k+1/2. This convention will also be followed for gra-
dients at faces, hence for example,

∇̃φi,j,k = ((φ̃x)i+1/2,j,k, (φ̃y)i,j+1/2,k, (φ̃z)i,j,k+1/2) (3.3)

To specify the finite volume formulation of the conservation law

Qt +∇ · F (Q) = S (3.4)
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whereQ(x, y, z, t) is the vector of conserved quantities and F (Q) = (f1(Q), f2(Q), f3(Q))
is the flux function, we integrate the equation over a computational cell and use the
divergence theorem to attain

d

dt
Q̄(t)i,j,k +

1
h3

∫
∂Vi,j,k

F (Q(x, y, z, t)) = S̄(t)i,j,k. (3.5)

In this equation, the flux integral is defined as∫
∂Vi,j,k

F (Q(x, y, z, t)) dx dy dz

=
∫
Ei+1/2,j,k

f1(Q(xi+1/2, y, z, t)) dz dy −
∫
Ei−1/2,j,k

f1(Q(xi−1/2, y, z, t)) dz dy

+
∫
Ei,j+1/2,k

f2(Q(x, yj+1/2, z, t)) dz dx−
∫
Ei,j−1/2,k

f2(Q(x, yj−1/2, z, t)) dz dx

+
∫
Ei,j,k+1/2

f3(Q(x, y, zk+1/2, t)) dy dx−
∫
Ei,j,k−1/2

f3(Q(x, y, zk−1/2, t)) dy dx,

or using the definition of face average

1
h3

∫
∂Vi,j,k

F (Q(x, y, z, t)) =
f̃1(Q(t))i+1/2,j,k − f̃1(Q(t))i−1/2,j,k

h

+
f̃2(Q(t))i,j+1/2,k − f̃2(Q(t))i,j−1/2,k

h

+
f̃3(Q(t))i,j,k−1/2 − f̃3(Q(t))i,j,k−1/2

h
(3.6)

Since the right hand side of this equation resembles a discretized divergence, we also
write

1
h3

∫
∂Vi,j,k

F (Q(x, y, z, t)) = ∇̃ · F̃ (Q)i,j,k,

i.e., the operator (∇̃·) is the sum of simple differences of averaged quantities over
faces.

Applying the above definitions to Eq. (2.2) yields the system of ODEs,

d

dt
ū∗(t)i,j,k = −∇̃ · F̃ (u∗, q)i,j,k + H̄(t)i,j,k. (3.7)

where we treat q as known and consider u to be computable from u∗ using Eq. (2.3).
Note that Eq. (3.7) is mathematically exact, i.e. no numerical approximations have
been introduced up to this point. The flux function, F, in Eq. (3.7) is split into two
pieces,

F (u∗, q) = A(u∗, q) +D(u∗), (3.8)

where A (which contains the nonlinear terms in F ) is treated explicitly in the temporal
integration scheme and D (the diffusive terms) is treated implicitly. The discretization
of A is described in detail next, followed by the details of the temporal integration
method.
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3.2. Explicit Discretization of Nonlinear Terms. The explicit part of the
flux function in Eq. (3.8), A(u∗, q) = (a1(u∗, q), a2(u∗, q), a3(u∗, q)), is defined as

a1 =

 uu+ q
uv
uw

 , a2 =

 vu
vv + q
vw

 , a3 =

 wu
wv

ww + q

 . (3.9)

Here u = (u, v, w) is defined by Eq. (2.3) and the discretization of the projection, P,
is described in Section 3.2.2.

To compute the nonlinear term, ∇̃ · F̃ (u∗, q), in Eq. (3.7), it is necessary to
construct an accurate approximation of averages of the flux function, namely Ã(u∗, q),
from cell average quantities ū∗ (and q̄). In the temporal method, Ã(u∗, q) is treated
explicitly, and we denote the approximation at a given time tm by Ã(ū∗,m, q̄m). The
computation of Ã(ū∗,m, q̄m) proceeds in three separate steps:

1. computing the averages over faces of ũ∗,m and q̃m from the cell averages ū∗,m

and q̄m

2. applying a projection operator to ũ∗,m to yield divergence-free face averages
ũm

3. computing the averages of the flux function Ã(ū∗,m, q̄m) from the averages
ũm and q̃m.

3.2.1. Computing averages on faces. Given cell average values, φ̄i,j,k, a
fourth-order approximation to the average of φ over face Ei+1/2,j,k is

φ̃i+1/2,j,k =
−φ̄i−1,j,k + 7(φ̄i,j,k + φ̄i+1,j,k)− φ̄i+2,j,k

12
. (3.10)

This approximation is derived by simply integrating a standard one-dimensional in-
terpolation formula over the face. Eq. (3.10) is applied to q̄ and the components of
ū∗ that are normal to each face.

In finite-volume methods for hyperbolic problems, limiters are often applied to the
formula given in Eq. (3.10) near sharp gradients in the solution to avoid introducing
oscillations in the numerical solution (see, e.g., [14]) when the solution is not well-
resolved. A similar procedure has also been employed in an SDC-based method for
one-dimensional problems in [26]. Here, no limiters are used since our focus is on
understanding the behavior of the method when the solution is well-resolved, not
on increasing the robustness of the method when the solution is underresolved. For
second-order versions of the method Eq. (3.10) is replaced by a simple average.

3.2.2. The numerical projection. The fluxes defined in Eq. (3.9) contain the
averages over faces of the divergence-free velocity, u = (u, v, w). Hence, before the
averages of fluxes over faces can be computed, the face average of ũ must be computed
from those of ũ∗ through a numerical projection.

The divergence-free velocities, ũ, are computed by solving a discrete version of
Eq. (2.4) averaged over cells,

∇̃ · ∇̃hφ̄i,j,k = ∇̃ · ũ∗i,j,k. (3.11)

Eq. (3.11) is solved for an approximation to φ̄i,j,k where face averages of ũ∗ are
approximated by the analog of Eq. (3.10), and the averages of normal derivatives at
faces ∇̃φi,j,k (see Eq. (3.3)) are approximated by a fourth-order centered formula,
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∇̃hφ̄i,j,k, which, e.g., at Ei+1/2,j,k is

(φ̃x)i+1/2,j,k =
φ̄i−1,j,k + 15(−φ̄i,j,k + φ̄i+1,j,k)− φ̄i+2,j,k

12h
. (3.12)

This yields a 13-point stencil for the discrete Laplacian operator ∇̃·∇̃h. The resulting
linear system is solved using a standard multigrid procedure. For methods with
second-order spatial accuracy, ũ∗ is again computed with a simple average rather
than Eq. (3.10), and Eq. (3.12) becomes a two-point centered difference that yields
the standard 7-point stencil for ∇̃ · ∇̃h. Then

ũi,j,k = ũ∗i,j,k − ∇̃hφi,j,k (3.13)

are divergence-free edge averages in the sense that

∇̃ · ũi,j,k = 0. (3.14)

In the parlance of projection methods, we are using an “exact” projection of the
values ũ∗, i.e., the averages over faces of the normal velocity components of ũ satisfy
a discrete divergence constraint up to the accuracy of the elliptic solver. However,
in the flux functions defined in Eq. (3.9), all three components of the divergence-
free velocity, u = (u, v, w), are required at each face. The projection procedure just
described determines only the normal velocity at each face. The additional tangential
velocities are derived from the solution of Eq. (3.13) by first computing cell-average
velocities,

ūi,j,k = ū∗i,j,k − ∇̄hφ̄i,j,k, (3.15)

where the average of the gradient, ∇̄h, is computed using a centered difference formula
applied to φ̄i,j,k (the solution of Eq. (3.11)), e.g.

(φ̄x)i,j,k =
φ̄i−2,j,k + 8(−φ̄i−1,j,k + φ̄i+1,j,k)− φ̄i+2,j,k

12h
. (3.16)

Averages of the tangential velocities on faces are then computed by using Eq. (3.10)
(or the second-order analog) on the appropriate components of ūi,j,k. Neither ūi,j,k
nor the average of tangential velocities on faces satisfy a discrete divergence constraint.

3.2.3. Computing nonlinear terms. In order to compute higher-order accu-
rate values of averages of the flux functions, it is necessary to compute the average
over faces of the products of velocities appearing in Eq. (3.9). The primary difficulty
in building higher-order finite volume methods is that the average of a product is
not equal to the product of averages. We proceed as in [22] by expressing averages
of a product as the product of averages plus a correction term that depends on ap-
proximations to the tangential derivatives of the quantities on the face. To achieve
fourth-order accuracy, it is sufficient to include only the first derivatives in the cor-
rection.

For example, for an arbitrary quantity φ̃ on face Ei+1/2,j,k

(φ̃ρ)i+1/2,j,k = (φ̃i+1/2,j,k)(ρ̃i+1/2,j,k) +
h2

12
(φ̃yρ̃y + φ̃z ρ̃z) +O(h4), (3.17)

where, for example,

φ̃y =
−5φ̃i+1/2,j+2,k + 34(φ̃i+1/2,j+1,k − φ̃i+1/2,j−1,k) + 5φ̃i+1/2,j−2,k

48h
. (3.18)
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When a second-order finite-volume spatial discretization is used, Eq. (3.10) is replaced
by a simple average of adjacent cells, and the O(h2) correction terms in Eq. (3.17)
are omitted. Once the appropriate averages of products of velocities at each cell face
have been computed, Ã(ũ∗) is computed by the simple difference given in Eq. (3.6).

3.3. Discretization of Diffusive Terms. To complete the description of the
spatial discretization, we now describe the computation of the diffusive terms, ∇̃ ·
D(u∗). From Eq. (2.2), and the definitions above,

∇̃ ·D(u∗) = ν∇̃ · ∇̃u∗. (3.19)

Given cell averages of ū∗,m at tm, we approximate this term using Eq (3.12),

∇̃ · D̃(ū∗,m) = ν∇̃ · ∇̃hū∗,m. (3.20)

In the time-stepping method described in the next section, the diffusive terms are
computed implicitly except at the beginning of each time step where Eq. (3.20) is
used explicitly.

3.4. Temporal discretization. The spatial discretization described in the pre-
vious section is integrated in time using a Method of Lines approach based on a semi-
implicit Spectral Deferred Corrections (SISDC) method [30]. The basic approach in
the SDC method is to advance the solution of the ODE from time tn to tn+1 through
the use of intermediate values defined by nodes in the interval [tn, tn+1], which here
are denoted generically tm. The SDC method proceeds by first computing a provi-
sional solution using a first-order forward/backward Euler step at each of the nodes
tm. Then, a series of corrections sweeps are performed wherein an approximation to
the error or correction to the provisional solution is computed by a similar first-order
method at the nodes tm. In each of the corrections sweeps, the equation for the
correction contains an explicitly computed approximation to the temporal integral of
the right hand side of the ODE, which is computed using a quadrature rule applied
to the values at the nodes tm. For specific details of semi-implicit SDC methods, the
reader is referred to [30, 27]. For an example of SDC applied to projection methods,
see [29, 31].

Each correction sweep of SDC raises the formal order of accuracy of the overall
method by one when a first-order forward/backward Euler approximation scheme is
used. Hence for the fourth-order temporal methods, four total SDC sweeps (including
the provisional sweep) are performed, while for the second-order methods, two sweeps
are done. The maximum formal order of SDC methods is that of the underlying
quadrature rule defined on the nodes tm. Here, for the fourth-order methods we use
3 Gauss-Lobatto nodes in the SDC sweeps (including the endpoints tn and tn+1) so
that the quadrature rule is equivalent to Simpson’s rule. For second-order temporal
accuracy, the quadrature rule is simply the trapezoid rule, hence no intermediate
nodes are actually used. A detailed study of the the choice of quadrature nodes for
semi-implicit SDC methods appears in [27].

Here we provide a concise summary of one semi-implicit substep in the SDC time
integration method for updating cell average values ū∗. Superscripts are used to
denote the time level of each approximation; for example, the approximation to the
cell-averaged value ū∗(xi, yj , zk, tm) is denoted ū∗,mi,j,k. Superscripts or subscripts are
suppressed when the meaning is apparent.

At the beginning of each time step, we have the quantities ū∗,n and p̄n. Before
the SDC sweeps are begun, ∇̃ · (Ã(ū∗,n, q̄n) + D̃(ū∗,n)) and H̄n are computed. The
value of q̄m is also set to p̄n for each m.
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Next a provisional solution is approximated at each substep defined by tm+1 using
the forward/backward Euler update

(I − ν∆tm∇̃ · D̃)ū∗,m+1 = ū∗,m + ∆tm(−∇̃ · Ã(ū∗,m, q̄m) + H̄m), (3.21)

where ∆tm = tm+1 − tm. This equation is solved with a standard multigrid method.
After ū∗,m+1 is computed, new values ∇̃ · Ã(ū∗,m+1) are computed for the next sub-
step.

Once the provisional solution is computed, additional SDC correction sweeps are
done to improve the accuracy of the provisional solution (three sweeps for the fourth-
order temporal accuracy and one for the second order). In each correction sweeps
k, a similar first-order semi-implicit method is done at each substep to a modified
equation of the form

(I − ν∆tm∇̃ · D̃)ū∗,m+1,k+1 = ū∗,m,k+1 + ∆tm
(
∇̃ · (−Ã(ū∗,m,k+1, q̄n) + Ã(ū∗,m,k, q̄n))

)
− ν∆tm∇̃D̃(ū∗,m,k) + Im+1

m (ū∗,m,k, q̄n), (3.22)

where the term

Im+1
m (ū∗,m,k, q̄n) ≈

∫ tm+1

tm

∇̃ ·
(
−Ã(ū∗,k, q̄n) + νD̃(ū∗,k)

)
+ H̄ dt. (3.23)

See [30] for a more detailed derivation of the correction equation.
Finally, at the end of each full time step, two additional tasks are completed:
(1) Reset ū∗,n+1 to ūn+1 which has been computed in the projection step of the

computation of Ã(ū∗,m+1, q̄n) in the final SDC substep as discussed in Section
3.2.2.

(2) Compute an update to p̄n+1 by discretizing Eq. (2.5),

p̄n+1 = q̄n +
φ̄n+1 − φ̄n

∆t
− ν∇̃ · ∇̃hφ̄n+1. (3.24)

A rigorous analysis of the discretization approach developed here for incompress-
ible Navier-Stokes is not feasible. However, we have performed a linear stability
analysis of the integration schemes proposed here for a linear advection / diffusion
problem. Results of that analysis are presented in the appendix.

This pressure update yields only a temporally second-order update of the pressure,
but this does not affect the accuracy of the velocities. If an accurate value of pressure
were desired, the time derivative term in Eq. (3.24) equation must be higher-order
accurate. In [22] this derivative is computed to fourth order accuracy by using the
cell average values of φ at 5 SDC substeps. Here, the numerical diagnostics do not
include the pressure, hence, the lower-order update is sufficient.

For the results presented here, p̄ and q̄ are set to zero at the initial time step.
For each subsequent time step q̄n is initialized to the approximation of p̄n+1 given
by Eq. (3.24) from the previous time step, and is then held constant for each SDC
substep.

4. Numerical Results. In this section we first demonstrate the convergence
behavior of the SDC schemes for smooth problems. For this first series of tests we
consider four variants of the SDC algorithm, S2T2, S2T4, S4T2, S4T4, where for
SnTm, n refers to the spatial order and m refers to the temporal order. For the
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second-order temporal discretization, the quadrature uses the trapezoidal rule and a
single SDC iteration is required. For the fourth-order temporal discretization, we use
Simpson’s rule for the quadrature with 3 SDC iterations.

For the second example, we investigate in more detail the performance of S2T2
and S4T4 on the simulation of three-dimensional maintained homogeneous isotropic
turbulence. Both tests are based on the same basic configuration in which we specify a
smooth initial velocity profile and a smooth forcing term at large scales. In particular
the initial conditions are a single Fourier mode (to give a sensible estimate for ∆t).
The turbulence is maintained through a time-dependent zero-mean source term in the
momentum equation consisting of a superposition of long-wavelength Fourier modes,
following [4]. Specifically, the domain is a triply periodic unit cube, and the forcing
term in (2.1) for each example is specified to be

H(x, t) =
∑
|κ|∈[1,4]

ai,j,k cos (fi,j,kt+ ωi,j,k) cos(2πκix+ ψi,j,k)

× cos (2πκjy + ηi,j,k) cos(2πκkz + ζi,j,k),

for random amplitudes ai,j,k, frequencies fi,j,k ∈ [π, 2π), and phases ωi,j,k, ψi,j,k,
ηi,j,k and ζi,j,k ∈ [0, 2π). The early time behavior of this system, before the turbulent
cascade has had time to populate the higher frequencies, provides a canonical example
of a smooth flow problem. At later times this system transitions to fully developed
turbulent flow, which we use to examine the behavior for turbulence simulations.

4.1. Convergence Tests. For the convergence tests we consider five different
resolutions ranging from 323 to 5123 and compare the relative errors. For these
simulations we set the kinematic viscosity, ν = 2.0 × 10−3 so that the solution is
well-resolved even on the coarsest grid. In each case we choose a ∆t proportional to
∆x, and hold that value fixed for the simulation. We consider three different ratios
of ∆t to ∆x. The largest, corresponding to ∆tL = 0.012 for the 323 grid, is based on
approximating the maximum stable time step for S2T2. We also consider two smaller
time steps corresponding to a reduction of ∆tL by factors of 2 and 4, respectively.
The final time is T = 0.12 for the runs with the large time step, T = 0.06 for the
medium time step, and T = 0.03 for the smallest time step. We consider all five
different resolutions at the largest and medium time step; for the smallest time step,
we consider only the four resolutions as the trends are already apparent. Convergence
behavior in L2, estimated by comparing solutions at adjacent resolutions, for the
small, medium and large values of ∆t are presented in Figure 5.1. For the smooth
flow problem considered here, essentially the same results are obtained in L1 and
L∞. For the smallest time step, the error for the spatially second-order methods is
dominated by the spatial error; e.g., S2T2 and S2T4 show second-order behavior with
essentially no improvement from the fourth order temporal differencing in S2T4. S4T4
shows consistent fourth order convergence. S4T2 initially shows fourth-order behavior;
however, with more refinement, the reduced temporal accuracy begins to dominate
the error. At the medium time step, S2T2 and S2T4 remain second-order and S4T4
remains fourth-order. For the medium time step, S4T2 is initially somewhat better
than second-order but at higher resolutions the convergence reduces to second-order.
At the largest time step, S4T4 remains fourth-order accurate while all of the other
variants now exhibit second-order convergence. The higher-order spatial treatment in
S4T2 improves the overall accuracy but does not alter the rate of convergence.
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4.2. Turbulent Flow Diagnostics. We now consider the performance of the
SDC approach when applied to a more complex flow, i.e. maintained homogeneous
isotropic turbulence. The goal here is to assess the potential advantage of using a
fourth-order rather than second-order discretization when the motivation is to be
able to use the coarsest possible spatial resolution that can still accurately resolve
the turbulent flow. For these tests, we restrict consideration to S2T2 and S4T4. In
addition, we also include a comparison to the methodology used for the adaptive
incompressible flow solved discussed in [2]. The advective discretizations in this ap-
proach are based on unsplit second-order Godunov type methodology adapted from
shock-capturing schemes. Here we consider a piecewise linear version of the algorithm,
denoted IAMR and a piecewise parabolic version, denoted PPM.

As noted before, we use the same basic configuration as was used for the con-
vergence tests. To enable a more detailed comparison, we run the S4T4 algorithm
at a resolution of 2563 until the flow has transitioned to a well-developed turbulent
flow. We then restart each of the methods with coarsened versions of this data and
run for approximately one eddy turnover time. We also continue the 2563 S4T4 sim-
ulation to the same time as the coarser versions. This run will be referred to as the
high-resolution solution hereafter.

For the first case, we set ν = 3× 10−4, corresponding to a peak Taylor Reynolds
number of Reλ = uλ/ν ≈ 62, where the Taylor microscale is defined as λ2 = 15νu2/ε,
the energy dissipation rate is ε = u3/l for integral length scale l ≈ 0.1 and rms
velocity fluctuation u ≈ 0.775 (arbitrary units). Simulation results of the magnitude
of vorticity for each of the four methods on a 1283 grid are presented in Figure 5.2
along with the high-resolution simulation. The (x, z)-plane at y = 0 is shown, but
this choice is arbitrary given that the boundary conditions are periodic. All data are
taken from exactly the same point in time, which corresponds to a local peak in the
kinetic energy. We note that the shock-capturing schemes both produce reasonable
looking solutions but are somewhat lacking in fine scale detail compared to the high-
resolution simulation. The second-order S2T2 scheme, on the other hand, appears to
have more fine-scale detail than the high-resolution simulation. The S4T4 scheme at
1283, not surprisingly, appears to be closer to the high-resolution simulation than the
other approaches. To make this comparison more precise, we plot in Figure 5.3 the
compensated spectrum from the simulations. The compensated spectrum is given by
κ5/3E(κ) (evaluated pointwise) where E(κ) is the standard energy spectrum. It is
obtained by computing the FFT of the velocity components, computing the energy
in κ space and multiplying by the κ5/3. The spectrum is then computed by averaging
over spherical shells of width one. In the compensated spectrum a κ−5/3 inertial
range appears flat. We note that the data has not been normalized in any way.
From Figure 5.3 we can see that the shock-capturing schemes have significantly less
energy at higher wavelengths than the high-resolution solution. This reflects the
role of numerical dissipation in these schemes and is consistent with the loss of fine-
scale detail in Figure 5.2. The second-order SDC scheme, on the other hand, does
not dissipate enough energy at higher wave lengths so the spectrum lies above the
high-resolution solution for high κ. This difference in behavior when the flow is
underresolved is a consequence of the centered treatment of advection in S2T2 versus
the upwinding approach used in IAMR and PPM. Finally, S4T4 does a good job of
tracking the spectrum of the high-resolution solution. We note that the Reynolds
number considered here is close to the largest value that can be resolved with S4T4
on a 1283 grid; none of the schemes provide an acceptable solution at 643. In Figure
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5.4, we provide a further comparison, showing the compensated spectrum for the
second-order schemes at 2563 compared to S4T4 at 1283. The results here are roughly
comparable, suggesting that the use of the fourth-order SDC algorithm reduces the
computational requirements by about a factor of two in each spatial dimension, thus
reducing the total number of points (space × time) advanced to reach a specified time
by a factor of 16 for a three-dimensional simulation.

To assess the impact of the higher-order algorithm on execution time, we measured
both S2T2 and S4T4 on a 1283 grid. For this test case the second-order algorithm
used 1570 seconds whereas the fourth-order algorithm used 4405 seconds. Thus, the
higher-order algorithm increased the computational cost per grid point by a factor
of 2.8. Given that the higher-order algorithm reduces the number of zones advanced
by a factor of 16, the net computational advantage of the higher-order algorithm is
approximately a factor of 5.7.

We would expect that dimensional analysis would enable us to scale resolution
requirements with Reynolds number. In particular, the minimum resolution needed
to adequately resolve a turbulent flame should scale with the Kolmogorov length
scale, η. We can estimate η = (ν3/ε)1/4, which allows us to rewrite the Taylor
Reynolds number as Reλ ∼ (l/η)2/3. A reasonable assumption is that the relationship
between resolution and the Kolmogorov scale is linear; i.e., the minimum ∆x is a
constant multiple of η where the constant is a property of the particular method.
With this assumption, since l is a large-scale property of the flow, we can estimate
the resolution needed for a given Reλ for a given method in terms of this constant.
Based on this analysis, we would predict that the maximum Reynolds number that
we could resolve with S4T4 at 643 would be Reλ ≈ 39, corresponding to viscosity,
ν = 7.6 × 10−4. In Figure 5.5 we present vorticity slices from 643 simulations for
ν = 7.6 × 10−4. The qualitative results are similar to what was observed for the
higher Reynolds number on the finer grid, with the shock-capturing scheme missing
some of the fine-scale detail and with S2T2 overemphasizing those details. In Figure
5.6 we present the compensated spectrum for these lower Reynolds number runs. At
this Reynolds number we do not see a well-developed inertial range, nevertheless the
relative behavior of the four schemes tested is almost identical to the higher Reynolds
number case. This confirms the scaling relationship derived above, which, in turn,
shows that the estimated savings from using a higher-order method is insensitive to
Reynolds number.

5. Summary. We have developed a fourth-order algorithm for the incompress-
ible Navier-Stokes equations based on an auxiliary variable formulation. The method-
ology uses fourth-order finite volume differencing in space and a fourth-order spectral
deferred corrections integration scheme in time. We demonstrated that the method
converges at the expected rate for smooth flows. More importantly, we demonstrated
that the use of the fourth-order discretization provided a significant advantage for
modeling of turbulent flows. In particular, we showed that the fourth-order scheme
provided about a factor two in each direction reduction in the size of the computa-
tional mesh needed to resolve a turbulent flow at a given Reynolds number compared
to a number of different second-order discretization approaches. This last observation
is a key issue in the utility of these types of discretizations for application to more
complex low Mach number flow models.

The results presented here open up several avenues of investigation. In terms
of the algorithm, variations on the basic discretization, such as choice of quadrature
rule and spatial discretization can be investigated. Another promising extension is to
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embed the iterative temporal integration strategy within adaptive mesh refinement
algorithms. The long term goal is to extend the higher-order methods described here
to provide the basis for next generation algorithms for zero Mach number flow models
in combustion and astrophysics building on existing second-order methods [16, 33].
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Fig. 5.1. Here we show the convergence behavior of the S2T2, S2T4, S4T2 and S4T4 al-
gorithms. The black and blue lines show perfect second-order convergence and the red lines show
perfect fourth-order scaling. Panel (a) shows results using the small time step; panel (b) shows
results using the medium time step and panel (c) shows results using the largest stable time step for
these methods. We note that for each panel the number of time steps taken for the coarsest mesh
is the same; thus, in each panel the final times are different. We note that the S2T2 and S2T4
data show almost ideal second-order behavior and the S4T4 data shows almost ideal fourth-order
behavior. The S4T2 data show intermediate convergence.
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Fig. 5.2. Simulations for high Reynolds number case. Each panel represents a contour plot of
the magnitude of vorticity on an (x, z)-plane corresponding to y = 0.
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Fig. 5.3. Compensated spectrum for high Reynolds number case comparing schemes at 1283
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Fig. 5.4. Compensated spectrum for high Reynolds number case comparing schemes at 2563 to
S4T4 at 1283.
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Fig. 5.5. Simulations for low Reynolds number case. Each panel represents a contour plot of
the magnitude of vorticity on an (x, z)-plane corresponding to y = 0.
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Fig. 5.6. Compensated spectrum for low Reynolds number case.
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Appendix A. Linear-stability of the SDC methods.
The linear stability of the temporal integration methods based on a semi-implicit

SDC discretization is considered in [27]. Since the particular choice of quadrature
nodes and iterations used for the fourth-order time integration method used in this
paper is not covered in [27], we include the stability diagrams here for completeness.

In order to study the linear stability of a semi-implicit scheme, one has to first
decide how to split the traditional linear model problem. In the context of PDEs
where advection terms are treated explicitly and diffusive terms implicitly (as is the
case in the paper), the most logical splitting is

y′ = I(λ)y + R(λ)y, (A.1)

for the complex scalar λ. The imaginary term is treated explicitly and real term
explicitly. This choice is convenient since one can then produce the traditional stability
diagram in the complex plane.

Fig. A.1 displays the level curves of the amplification factor in the complex plane.
Note that the axes are scaled cubicly as in [27] to provide more detail near the origin.
The method is stable for some portion of the imaginary axis which is desirable for
problems with low Reynolds number. The method is also A(α)-stable in the semi-
implicit sense, but not L(α)- stable (again see [27] for a more detailed discussion of
A(α) and L(α) stability for semi-implicit methods).

To connect the stability diagrams to a time-step restriction for PDEs, consider a
linear advection-diffusion equation

ut = aux + νuxx. (A.2)

Using a method of lines discretization and the fourth-order finite volume methods
used in this paper would result in a system of equations with eigenvalues

λk = µi
8 sin(ωk∆x)− sin(2ωk∆x)

6
+ σ
−15 + 16 cos(ωk∆x)− cos(2ωk∆x)

6
(A.3)

where µ = a/∆x, σ = ν/∆x2, and ωk = 2πk for k = [0, N − 1]. Linear stability is
acheived if λk∆t is within the stability diagram for the particular method. For a three
dimensional problem, the eigenvalues would include the analagous contributions from
derivatives in the other dimensions.
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Fig. A.1. Semi-implicit linear stability diagram for the fourth-order SDC time integration method.
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